RESPONDENT'S EXHIBIT 17

Adsorption and desorption of TPA, a transformation product of DCPA, in one soil.

Report:	MRID 49307517. Swales, S. 2014. (14C Adsorption/Desorption in Soil (Revised study performed, sponsored and submitt Newport Beach, CA. AMVAC ID: 100- 10, 2003 and completion August 22, 200 16, 2003. Revised study completed January	C)-TPA, A Metabolite of DCPA: per PRN 11-03 and 86-5). Unpublished ed by AMVAC Chemical Company, MET-012a. Experimental initiation June 03 (p. 14). Study completion date October ary 29, 2014.
Document No.:	MRID 49307517	
Guideline:	OCSPP 835.1230	
Statements:	The study was conducted in accordance Signed and dated Data Confidentiality, of Authenticity statements were provide	with OECD GLP and UK GLP (p. 5). GLP, Quality Assurance, and Certification d (pp. 2-3, 5-7).
Classification:	This study is supplemental. The definitive type of soil rather than across five soil to test soil was representative of use sites. reported.	ve study was conducted using only one ypes. It was unclear whether the foreign Limits of Quantification (LOQ) were not
PC Code:	078701 (for DCPA)	
Reviewer:		t- J.
	James Lin, Environmental Engineer U.S. EPA	Signature: Date: January 10, 2017

Executive Summary

In a batch equilibrium study, one European soil (pH 4.1) was used to measure sorption coefficients of [¹⁴C]TPA in darkness at $20 \pm 2^{\circ}$ C. The determined Freundlich Adsorption Coefficient (K_F) value was 1.68 L/kg; the respective K_{FOC} value was 4.¹ The Freundlich Desorption Coefficient (K_F-des) value was 1.97; the respective K_{FOC} value was 4. Percent adsorption ranged from 28.6-32.9% of the applied. Percent desorption, as percent of the adsorbed, ranged from -1.9 to 6.9% of the applied. The Freundlich exponent corresponding to the K_F value was 0.96 following the adsorption phase and 0.96 following the desorption phase.

Table 3 summarizes the adsorption coefficients measured in the study. **Table 4** summarizes the desorption coefficients measured in the study.

Overall recoveries ranged from 96.0-100.7% of the applied for the Saddleworth Moor clay loam. The definitive samples were not analyzed for the parent compound. The stability of the parent compound was confirmed by HPLC analysis during preliminary testing.

Coefficients of variation (CV) could not be determined.

¹ Sorption is a generic term that applies to absorption, adsorption, and desorption processes. Adsorption refers to sorption onto a two-dimensional surface; absorption refers to sorption into a three dimensional matrix. Both types of sorption occur in soils and sediments. Desorption refers to a sorbate becoming desorbed from a sorbent. Desorption distribution coefficients are measured by removing solution from a sorption experiment and adding fresh solution, so that all material measured in solution will be the desorbed material. The guideline uses the term adsorption in place of sorption and refers to the initial measurement of sorption.

Results Synopsis:

Soil/ Sediment, % OC	Regressed K _d (L/kg-soil)		Range of Regressed K _d (L/kg- OC)		K _F ((L/kg-soil) ^{-1/n})			1/n for adsorption	KFOC (L/kg-OC)- ^{1/n})	Ceq Range	
рН	Value ± SE	r ²	p-value	soil)	Value ± SE	Value ± SE	r ²	p-value	Value ± SE	Value ± SE	(mg/L)
Adsorption											
Saddleworth Moor Clay loam (47.5% OC, pH 4.1)	1.60 ± 0.0	0.999	9.1E-17	1.54-1.94	3 ± 0.0	1.68 ± 1.0	0.999	2.2E-09	0.96 ± 0.0	4 ± 0.0	0.0335- 3.634
Desorption											
Saddleworth Moor Clay loam (47.5% OC, pH 4.1)	1.92 ± 0.0	0.999	1.1E-15	1.83-2.29	4 ± 0.0	1.97 ± 1.0	0.999	3.9E-11	0.96 ± 0.0	4 ± 2.1	0.027- 2.947

Table 1. Summary of Adsorption/Desorption Results^A

Abbreviations: SE = standard error of regression. ^A Reviewer-calculated values using data obtained from Table 6, p. 33 of the study report. See Attachment 2 for equations used for calculations.

I. Material and Methods

A. Materials

1. Test Material: [¹⁴C]Tetrachloroterephthalic acid (TPA, Chlorthal; p. 15; Appendix 1, p.

46)
Batch/Lot number: 03BLY009
Specific radioactivity: 1.2 MBq/mg
Radiochemical purity: 99.94% (HPLC; Appendix 1, p. 47)
Purity: Not reported
Solubility in water: 5 μg/L (p. 27)

3. Soils/Sediment: The study was conducted using four European test soils (p. 17). Each soil was collected from *ca*. 0-8 inch layer that had not been treated with pesticides for more than 5 years (Appendix 3, pp. 49-52). Prior to use in the study, the soils were passed through a 2-mm sieve and the sieved soils were air-dried and stored in the dark at room temperature. A summary of the physical and chemical properties of the soils using USDA Soil Taxonomy is provided in Table 2. It was unclear whether the test soils were representative of use sites.

1				
Soil Name	PT103	SK920191	SK15556090	Saddleworth Moor
. · ·			TT I I TT	
Origin	Baylham, Ipswich	South Witham	Hartington Upper	Saddleworth Moor,
		Quarry, South	Quarter,	Huddersfield, West
		Witham,	Derbyshire	Yorkshire
		Lincolnshire		
USDA Textural	Sandy loam	Clay	Silty clay loam	Clay loam
Class				
% Sand	75	38	20	44.57
% Silt	12	26	61	24.76
% Clay	13	36	19	30.67
%OC	1.2	2.1	4.2	47.5
CEC (meq/100 g)	6.1	23.0	20.2	74.5
pH in water	5.3	8.0	7.0	4.1
% moisture (1/3 bar)	9.9	34.4	32.9	Not reported
Water holding	36.2	78.6	93.5	421.1
capacity (g/100 g)				
Soil Taxonomy	Not reported	Not reported	Not reported	Not reported
$CaCO_3(\%)$	Not reported	Not reported	Not reported	Not reported

 Table 2. Description of Soil/Sediment

Data were obtained from Appendix 3, pp. 49-52 of the study report.

B. Study design

1. Experimental conditions: Preliminary tests were conducted to determine the solubility of the test substance in 0.01M CaCl₂ solution, the adsorption of the test substance to test containers, the appropriate soil:solution ratio and equilibration times to be used in the definitive study, and the stability of TPA in 0.01M CaCl₂ solution (pp. 19-21). The solubility of TPA in 0.01M CaCl₂ solution was determined to be 5 µg/mL (p. 27). No adsorption of TPA to polypropylene co-polymer (PPCO) and Teflon centrifuge tubes was observed. PPCO centrifuge tubes were selected for the remainder of the study. Little to no adsorption was observed in the initial three soils (PT103 sandy loam, SK920191 clay, and SK15556090 silty clay loam) at soil:solution ratios of 1:1, 1:5, and 1:25 (w:v). Therefore, a fourth soil (Saddleworth Moor clay loam) was assessed at soil:solution ratios of 1:3.5 and 1:25 (w:v). A soil:solution ratio of 1:4 (w:v) was selected for use in the definitive test. In addition, the equilibrium time test and isotherms test were performed using the Saddleworth Moor clay loam soil since no further information could be obtained using the initial three soils. It was determined that 24 hours was a suitable equilibration time for the definitive test (pp. 20-21). HPLC and TLC analyses confirmed the stability of TPA in 0.01M CaCl₂ solution for 48 hours.

For the definitive study, sorption kinetics were determined by pre-equilibrating duplicate aliquots of test soil in 0.01M CaCl₂ solution at a soil:solution ratio of 1:4 (w:v; pp. 17-18, 21). The samples were dosed with [¹⁴C]TPA at a nominal concentration range of 0.05 to 5.05 μ g/mL and shaken in the dark at 20 ± 2°C for 24 hours (p. 22). Following centrifugation, aliquots of the supernatants were removed for analysis. For desorption, an equivalent volume of fresh 0.01M aqueous CaCl₂ solution was added to each test vessel and the samples were equilibrated by shaking for 24 hours. Following centrifugation, aliquots of the supernatants were removed for analysis.

2. Analytical procedures: Radioactivity in the aqueous supernatants was determined by

Liquid Scintillation Counting (LSC; pp. 22-23). Following desorption, the soils were shaken with acetonitrile and analyzed using LSC. Non-extractable residues were measured by combustion and LSC.

The Limit of Detection (LOD) for LSC analysis was 1.5 times the background radioactivity (p. 23).

II. Results and Discussion

- **A. Mass Balance:** Overall recoveries ranged from 96.0-100.7% of the applied for the Saddleworth Moor clay loam soil (p. 28; Table 10, p. 35).
- **B. Transformation of Parent Compound:** The definitive samples were not analyzed for the parent compound. The stability of the parent compound was confirmed during preliminary testing.

C. Findings: Reported values were calculated using linear regression (Excel) and the equations and methods discussed in the calculations section.

Following the adsorption phase, equilibration concentrations in water were appropriate, ranging from 0.0335 to 3.6340 μ g/mL (Table 6, p. 33). Following the desorption phase, equilibration concentrations in water were appropriate, ranging from 0.0270 to 2.9470 μ g/mL.

Percent adsorption ranged from 28.6-32.9% of the applied. Percent desorption, as percent of the adsorbed, ranged from -1.9 to 6.9% of the applied (Table 7, p. 34).

Coefficients of variation (CV) could not be determined.

Tuble of Description of Hubbi phone Coefficients	Table 3.	Descrip	otion of	Adsor	ption	Coefficient	sA
--	----------	---------	----------	-------	-------	-------------	----

Soil	K _d (L/kg)	K _{oc}	$K_F (L/kg)$	K _{Foc}
Saddleworth Moor Clay loam	1.60	3	1.68	4
A				

^AReviewer-calculated values using data obtained from Table 6, p. 33 of the study report.

Table 4. Description of Desorption Coefficients^A

	-puon eoom			
Soil	K _{des} (L/kg)	Koc-des	K _{Fdes} (L/kg)	K _{Foc-des}
Saddleworth Moor Clay loam	1.92	4	1.97	4

^A Reviewer-calculated values using data obtained from Table 6, p. 33 of the study report.

Reviewer-calculated Freundlich sorption coefficients were in agreement with those reported by the study author (Tables 8-9, pp. 34-35).

3

2

1

0 0.0

Regression of K_d by percent organic carbon, percent clay, and CEC could not be determined.

2.0

y = 1.9243x $r^2 = 0.9989$

2.5

3.0

Parameter	r ²	p-value
Kd vs. % organic carbon	Not determined	Not determined
Kd vs. % clay	Not determined	Not determined
Kd vs. CEC	Not determined	Not determined

Table 5. Summary of Regressed Kd vs %OC, %Clav, and CEC

1.5

Pesticide Concentration in Water at Equilibrium (mg/L)

1.0

III. Study Deficiencies and Reviewer's Comments

1. The following deviations were noted:

0.5

The definitive study was conducted using only one type of soil rather than across a. five soil types. The guidelines state that the study should be conducted using different soil types with a varying range of organic carbon content, clay content and soil texture, and pH.

- b. It is unclear whether the foreign test soil was representative of use sites.
- c. Limits of Quantification (LOQ) were not reported.
- In a separate study to investigate the rate of degradation of (¹⁴C)-TPA in the soils originally selected for this study (PT103, SK920191 and SK15556090), aged sorption coefficients were determined. Aged sorption coefficients (K_{oc}) were 19.9, 14.5 and 11.9 for PT103, SK920191 and SK15556090, respectively, indicating that adsorption of TPA to soils may also be influenced by time (i.e. soil aging; p. 29).

IV. References

1. U.S. Environmental Protection Agency. 2008. Fate, Transport and Transformation Test Guidelines, OPPTS 835.1230, adsorption/desorption (batch equilibrium). Office of Prevention, Pesticides and Toxic Substances, Washington, DC. EPA 712-C-08-019.

Code Name/ Synonym	Chemical Name	Chemical Structure	Study Type	MRID	Maximum %AR (day)	Final %AR (study length)			
	PARENT								
TPA (Chlorthal, Dacthal diacid, SDS- 954)	IUPAC: 2,3,5,6- Tetrachloroterephthalic acid CAS #: 2136-79-0 Formula: C ₈ H ₂ Cl ₄ O ₄ MW: 303.9 g/mol SMILES: c1(c(c(c(c(c(c1Cl)Cl)C(=O)O)Cl)Cl)Cl)C(= O)O		835.1230 Batch equilibrium	49307517	PRT	PRT			
MAJOR (>10%) TRANSFORMATION PRODUCTS									
No major transformation products were identified.									
MINOR (<10%) TRANSFORMATION PRODUCTS									
No minor transformation products were identified.									
	REFE	RENCE COMPOUNDS NOT IDENT	IFIED						
	All compo	unds used as reference compounds were	identified	1.					

DER ATTACHMENT 1. TPA and Its Environmental Transformation Products. A

A AR means "applied radioactivity". MW means "molecular weight". PRT means "parent".

Attachment 2: Calculations

Calculations were performed by the reviewer using Excel and the following equations.

Ceq range is the range of test concentrations in water at equilibrium. Cs is the test concentrations sorbed to soil or sediment at equilibrium.

 K_d –Distribution Coefficient for Adsorption = C_s/C_{eq} (eq 1)

- Regressed K_d is calculated using linear regression of Cs versus Ceq with a forced zero intercept over the range of measured Ceq for each soil/sediment.
- Range of K_d reflects the range of each K_d measured at a specific concentration in a soil/sediment

 K_{OC} -Organic Carbon Normalized Adsorption Coefficient = regressed $K_d * 100\%$ OC (eq 2)

Standard Error (SE) of
$$K_{OC} = K_d SE * 100\% OC$$
 (eq 3)

 K_F -Freundlich Adsorption Coefficient and the Freundlich exponent (1/n) were calculated using nonlinear regression of $C_s = K_F x$ Ceq ^{1/n}. Cs should be expressed in mg/kg and Ceq should be expressed in mg/L in the regression. (eq 4)

 K_{FOC} –Organic Carbon Normalized Adsorption Coefficient = $K_F * 100 / \% OC$ (eq 5)

Standard Error (SE) of $K_{FOC} = K_F SE *100\% OC$ (eq 6)

 K_{DES} –Apparent Desorption Coefficient = C_s/C_{eq} where C_s and C_{eq} are measured after an initial sorption measurement and the soil/sediment is placed in a new solution and allowed to equilibrate, so that any material in solution desorbed from the soil/sediment. (eq 7)

- Regressed K_{DES} is calculated using linear regression of Cs versus Ceq over the range of Ceq measured with a forced zero intercept for each soil/sediment.
- Range of K_{DES} reflects the range of each K_{DES} measured at a specific concentration in a soil/sediment

 K_{OC-DES} -Organic Carbon Normalized Apparent Desorption Coefficient = regressed $K_{DES} *100\%$ (eq 8)

Standard Error of Koc-DES = $K_{DES} SE^* 100\% OC$ (eq 9)

 K_{F-DES} -Freundlich Desorption Coefficient and the Freundlich Desorption exponent (1/n) were calculated using nonlinear regression of $C_s = K_{F-DES} \times Ceq^{1/n}$ (eq 10)

 $K_{FOC-DES}$ -Organic Carbon Normalized Freundlich Desorption Coefficient= $K_{F-DES}*100\%$ OC (eq 11)

Standard Error of $K_{FOC-DES} = K_F SE *100\% OC$

(eq 12)